Paper Reading AI Learner

Towards Context-Aware Neural Performance-Score Synchronisation

2022-05-31 16:45:25
Ruchit Agrawal

Abstract

Music can be represented in multiple forms, such as in the audio form as a recording of a performance, in the symbolic form as a computer readable score, or in the image form as a scan of the sheet music. Music synchronisation provides a way to navigate among multiple representations of music in a unified manner by generating an accurate mapping between them, lending itself applicable to a myriad of domains like music education, performance analysis, automatic accompaniment and music editing. Traditional synchronisation methods compute alignment using knowledge-driven and stochastic approaches, typically employing handcrafted features. These methods are often unable to generalise well to different instruments, acoustic environments and recording conditions, and normally assume complete structural agreement between the performances and the scores. This PhD furthers the development of performance-score synchronisation research by proposing data-driven, context-aware alignment approaches, on three fronts: Firstly, I replace the handcrafted features by employing a metric learning based approach that is adaptable to different acoustic settings and performs well in data-scarce conditions. Secondly, I address the handling of structural differences between the performances and scores, which is a common limitation of standard alignment methods. Finally, I eschew the reliance on both feature engineering and dynamic programming, and propose a completely data-driven synchronisation method that computes alignments using a neural framework, whilst also being robust to structural differences between the performances and scores.

Abstract (translated)

URL

https://arxiv.org/abs/2206.00454

PDF

https://arxiv.org/pdf/2206.00454.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot