Paper Reading AI Learner

Deep Learning-based FEA surrogate for sub-sea pressure vessel

2022-06-06 00:47:10
Harsh Vardhan, Janos Sztipanovits

Abstract

During the design process of an autonomous underwater vehicle (AUV), the pressure vessel has a critical role. The pressure vessel contains dry electronics, power sources, and other sensors that can not be flooded. A traditional design approach for a pressure vessel design involves running multiple Finite Element Analysis (FEA) based simulations and optimizing the design to find the best suitable design which meets the requirement. Running these FEAs are computationally very costly for any optimization process and it becomes difficult to run even hundreds of evaluation. In such a case, a better approach is the surrogate design with the goal of replacing FEA-based prediction with some learning-based regressor. Once the surrogate is trained for a class of problem, then the learned response surface can be used to analyze the stress effect without running the FEA for that class of problem. The challenge of creating a surrogate for a class of problems is data generation. Since the process is computationally costly, it is not possible to densely sample the design space and the learning response surface on sparse data set becomes difficult. During experimentation, we observed that a Deep Learning-based surrogate outperforms other regression models on such sparse data. In the present work, we are utilizing the Deep Learning-based model to replace the costly finite element analysis-based simulation process. By creating the surrogate we speed up the prediction on the other design much faster than direct Finite element Analysis. We also compared our DL-based surrogate with other classical Machine Learning (ML) based regression models( random forest and Gradient Boost regressor). We observed on the sparser data, the DL-based surrogate performs much better than other regression models.

Abstract (translated)

URL

https://arxiv.org/abs/2206.03322

PDF

https://arxiv.org/pdf/2206.03322.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot