Paper Reading AI Learner

EiX-GNN : Concept-level eigencentrality explainer for graph neural networks

2022-06-07 07:45:45
Pascal Bourdon (XLIM-ASALI), David Helbert (XLIM-ASALI), Adrien Raison

Abstract

Explaining is a human knowledge transfer process regarding a phenomenon between an explainer and an explainee. Each word used to explain this phenomenon must be carefully selected by the explainer in accordance with the current explainee phenomenon-related knowledge level and the phenomenon itself in order to have a high understanding from the explainee of the phenomenon. Nowadays, deep models, especially graph neural networks, have a major place in daily life even in critical applications. In such context, those models need to have a human high interpretability also referred as being explainable, in order to improve usage trustability of them in sensitive cases. Explaining is also a human dependent task and methods that explain deep model behavior must include these social-related concerns for providing profitable and quality explanations. Current explaining methods often occlude such social aspect for providing their explanations and only focus on the signal aspect of the question. In this contribution we propose a reliable social-aware explaining method suited for graph neural network that includes this social feature as a modular concept generator and by both leveraging signal and graph domain aspect thanks to an eigencentrality concept ordering approach. Besides our method takes into account the human-dependent aspect underlying any explanation process, we also reach high score regarding state-of-the-art objective metrics assessing explanation methods for graph neural networks models.

Abstract (translated)

URL

https://arxiv.org/abs/2206.03491

PDF

https://arxiv.org/pdf/2206.03491.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot