Paper Reading AI Learner

General Univariate Estimation-of-Distribution Algorithms

2022-06-22 16:32:04
Benjamin Doerr, Marc Dufay


We propose a general formulation of a univariate estimation-of-distribution algorithm (EDA). It naturally incorporates the three classic univariate EDAs \emph{compact genetic algorithm}, \emph{univariate marginal distribution algorithm} and \emph{population-based incremental learning} as well as the \emph{max-min ant system} with iteration-best update. Our unified description of the existing algorithms allows a unified analysis of these; we demonstrate this by providing an analysis of genetic drift that immediately gives the existing results proven separately for the four algorithms named above. Our general model also includes EDAs that are more efficient than the existing ones and these may not be difficult to find as we demonstrate for the OneMax and LeadingOnes benchmarks.

Abstract (translated)



3D Action Action_Localization Action_Recognition Activity Adversarial Attention Autonomous Bert Boundary_Detection Caption Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Drone Dynamic_Memory_Network Edge_Detection Embedding Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot