Paper Reading AI Learner

Multi-modal Sensor Data Fusion for In-situ Classification of Animal Behavior Using Accelerometry and GNSS Data

2022-06-24 04:54:03
Reza Arablouei, Ziwei Wang, Greg J. Bishop-Hurley, Jiajun Liu

Abstract

We examine using data from multiple sensing modes, i.e., accelerometry and global navigation satellite system (GNSS), for classifying animal behavior. We extract three new features from the GNSS data, namely, the distance from the water point, median speed, and median estimated horizontal position error. We consider two approaches for combining the information available from the accelerometry and GNSS data. The first approach is based on concatenating the features extracted from both sensor data and feeding the concatenated feature vector into a multi-layer perceptron (MLP) classifier. The second approach is based on fusing the posterior probabilities predicted by two MLP classifiers each taking the features extracted from the data of one sensor as input. We evaluate the performance of the developed multi-modal animal behavior classification algorithms using two real-world datasets collected via smart cattle collar and ear tags. The leave-one-animal-out cross-validation results show that both approaches improve the classification performance appreciably compared with using the data from only one sensing mode, in particular, for the infrequent but important behaviors of walking and drinking. The algorithms developed based on both approaches require rather small computational and memory resources hence are suitable for implementation on embedded systems of our collar and ear tags. However, the multi-modal animal behavior classification algorithm based on posterior probability fusion is preferable to the one based on feature concatenation as it delivers better classification accuracy, has less computational and memory complexity, is more robust to sensor data failure, and enjoys better modularity.

Abstract (translated)

URL

https://arxiv.org/abs/2206.12078

PDF

https://arxiv.org/pdf/2206.12078.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot