Paper Reading AI Learner

Efficient spike encoding algorithms for neuromorphic speech recognition

2022-07-14 17:22:07
Sidi Yaya Arnaud Yarga, Jean Rouat, Sean U. N. Wood

Abstract

Spiking Neural Networks (SNN) are known to be very effective for neuromorphic processor implementations, achieving orders of magnitude improvements in energy efficiency and computational latency over traditional deep learning approaches. Comparable algorithmic performance was recently made possible as well with the adaptation of supervised training algorithms to the context of SNN. However, information including audio, video, and other sensor-derived data are typically encoded as real-valued signals that are not well-suited to SNN, preventing the network from leveraging spike timing information. Efficient encoding from real-valued signals to spikes is therefore critical and significantly impacts the performance of the overall system. To efficiently encode signals into spikes, both the preservation of information relevant to the task at hand as well as the density of the encoded spikes must be considered. In this paper, we study four spike encoding methods in the context of a speaker independent digit classification system: Send on Delta, Time to First Spike, Leaky Integrate and Fire Neuron and Bens Spiker Algorithm. We first show that all encoding methods yield higher classification accuracy using significantly fewer spikes when encoding a bio-inspired cochleagram as opposed to a traditional short-time Fourier transform. We then show that two Send On Delta variants result in classification results comparable with a state of the art deep convolutional neural network baseline, while simultaneously reducing the encoded bit rate. Finally, we show that several encoding methods result in improved performance over the conventional deep learning baseline in certain cases, further demonstrating the power of spike encoding algorithms in the encoding of real-valued signals and that neuromorphic implementation has the potential to outperform state of the art techniques.

Abstract (translated)

URL

https://arxiv.org/abs/2207.07073

PDF

https://arxiv.org/pdf/2207.07073.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot