Paper Reading AI Learner

GE-Grasp: Efficient Target-Oriented Grasping in Dense Clutter

2022-07-25 07:18:42
Zhan Liu, Ziwei Wang, Sichao Huang, Jie Zhou, Jiwen Lu

Abstract

Grasping in dense clutter is a fundamental skill for autonomous robots. However, the crowdedness and occlusions in the cluttered scenario cause significant difficulties to generate valid grasp poses without collisions, which results in low efficiency and high failure rates. To address these, we present a generic framework called GE-Grasp for robotic motion planning in dense clutter, where we leverage diverse action primitives for occluded object removal and present the generator-evaluator architecture to avoid spatial collisions. Therefore, our GE-Grasp is capable of grasping objects in dense clutter efficiently with promising success rates. Specifically, we define three action primitives: target-oriented grasping for target capturing, pushing, and nontarget-oriented grasping to reduce the crowdedness and occlusions. The generators effectively provide various action candidates referring to the spatial information. Meanwhile, the evaluators assess the selected action primitive candidates, where the optimal action is implemented by the robot. Extensive experiments in simulated and real-world environments show that our approach outperforms the state-of-the-art methods of grasping in clutter with respect to motion efficiency and success rates. Moreover, we achieve comparable performance in the real world as that in the simulation environment, which indicates the strong generalization ability of our GE-Grasp. Supplementary material is available at: this https URL.

Abstract (translated)

URL

https://arxiv.org/abs/2207.11941

PDF

https://arxiv.org/pdf/2207.11941.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot