Paper Reading AI Learner

Keyword Spotting System and Evaluation of Pruning and Quantization Methods on Low-power Edge Microcontrollers

2022-08-04 16:49:45
Jingyi Wang, Shengchen Li

Abstract

Keyword spotting (KWS) is beneficial for voice-based user interactions with low-power devices at the edge. The edge devices are usually always-on, so edge computing brings bandwidth savings and privacy protection. The devices typically have limited memory spaces, computational performances, power and costs, for example, Cortex-M based microcontrollers. The challenge is to meet the high computation and low-latency requirements of deep learning on these devices. This paper firstly shows our small-footprint KWS system running on STM32F7 microcontroller with Cortex-M7 core @216MHz and 512KB static RAM. Our selected convolutional neural network (CNN) architecture has simplified number of operations for KWS to meet the constraint of edge devices. Our baseline system generates classification results for each 37ms including real-time audio feature extraction part. This paper further evaluates the actual performance for different pruning and quantization methods on microcontroller, including different granularity of sparsity, skipping zero weights, weight-prioritized loop order, and SIMD instruction. The result shows that for microcontrollers, there are considerable challenges for accelerate unstructured pruned models, and the structured pruning is more friendly than unstructured pruning. The result also verified that the performance improvement for quantization and SIMD instruction.

Abstract (translated)

URL

https://arxiv.org/abs/2208.02765

PDF

https://arxiv.org/pdf/2208.02765.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot