Paper Reading AI Learner

LFGCF: Light Folksonomy Graph Collaborative Filtering for Tag-Aware Recommendation

2022-08-06 07:06:24
Yin Zhang, Can Xu, XianJun Wu, Yan Zhang, LiGang Dong, Weigang Wang

Abstract

Tag-aware recommendation is a task of predicting a personalized list of items for a user by their tagging behaviors. It is crucial for many applications with tagging capabilities like this http URL or movielens. Recently, many efforts have been devoted to improving Tag-aware recommendation systems (TRS) with Graph Convolutional Networks (GCN), which has become new state-of-the-art for the general recommendation. However, some solutions are directly inherited from GCN without justifications, which is difficult to alleviate the sparsity, ambiguity, and redundancy issues introduced by tags, thus adding to difficulties of training and degrading recommendation performance. In this work, we aim to simplify the design of GCN to make it more concise for TRS. We propose a novel tag-aware recommendation model named Light Folksonomy Graph Collaborative Filtering (LFGCF), which only includes the essential GCN components. Specifically, LFGCF first constructs Folksonomy Graphs from the records of user assigning tags and item getting tagged. Then we leverage the simple design of aggregation to learn the high-order representations on Folksonomy Graphs and use the weighted sum of the embeddings learned at several layers for information updating. We share tags embeddings to bridge the information gap between users and items. Besides, a regularization function named TransRT is proposed to better depict user preferences and item features. Extensive hyperparameters experiments and ablation studies on three real-world datasets show that LFGCF uses fewer parameters and significantly outperforms most baselines for the tag-aware top-N recommendations.

Abstract (translated)

URL

https://arxiv.org/abs/2208.03454

PDF

https://arxiv.org/pdf/2208.03454.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot