Paper Reading AI Learner

Localizing the conceptual difference of two scenes using deep learning for house keeping usages

2022-08-09 16:25:56
Ali Atghaei, Ehsan Rahnama, Kiavash azimi

Abstract

Finding the conceptual difference between the two images in an industrial environment has been especially important for HSE purposes and there is still no reliable and conformable method to find the major differences to alert the related controllers. Due to the abundance and variety of objects in different environments, the use of supervised learning methods in this field is facing a major problem. Due to the sharp and even slight change in lighting conditions in the two scenes, it is not possible to naively subtract the two images in order to find these differences. The goal of this paper is to find and localize the conceptual differences of two frames of one scene but in two different times and classify the differences to addition, reduction and change in the field. In this paper, we demonstrate a comprehensive solution for this application by presenting the deep learning method and using transfer learning and structural modification of the error function, as well as a process for adding and synthesizing data. An appropriate data set was provided and labeled, and the model results were evaluated on this data set and the possibility of using it in real and industrial applications was explained.

Abstract (translated)

URL

https://arxiv.org/abs/2208.04884

PDF

https://arxiv.org/pdf/2208.04884.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot