Paper Reading AI Learner

'Is your explanation stable?': A Robustness Evaluation Framework for Feature Attribution

2022-09-05 06:39:13
Yuyou Gan, Yuhao Mao, Xuhong Zhang, Shouling Ji, Yuwen Pu, Meng Han, Jianwei Yin, Ting Wang

Abstract

Understanding the decision process of neural networks is hard. One vital method for explanation is to attribute its decision to pivotal features. Although many algorithms are proposed, most of them solely improve the faithfulness to the model. However, the real environment contains many random noises, which may leads to great fluctuations in the explanations. More seriously, recent works show that explanation algorithms are vulnerable to adversarial attacks. All of these make the explanation hard to trust in real scenarios. To bridge this gap, we propose a model-agnostic method \emph{Median Test for Feature Attribution} (MeTFA) to quantify the uncertainty and increase the stability of explanation algorithms with theoretical guarantees. MeTFA has the following two functions: (1) examine whether one feature is significantly important or unimportant and generate a MeTFA-significant map to visualize the results; (2) compute the confidence interval of a feature attribution score and generate a MeTFA-smoothed map to increase the stability of the explanation. Experiments show that MeTFA improves the visual quality of explanations and significantly reduces the instability while maintaining the faithfulness. To quantitatively evaluate the faithfulness of an explanation under different noise settings, we further propose several robust faithfulness metrics. Experiment results show that the MeTFA-smoothed explanation can significantly increase the robust faithfulness. In addition, we use two scenarios to show MeTFA's potential in the applications. First, when applied to the SOTA explanation method to locate context bias for semantic segmentation models, MeTFA-significant explanations use far smaller regions to maintain 99\%+ faithfulness. Second, when tested with different explanation-oriented attacks, MeTFA can help defend vanilla, as well as adaptive, adversarial attacks against explanations.

Abstract (translated)

URL

https://arxiv.org/abs/2209.01782

PDF

https://arxiv.org/pdf/2209.01782.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot