Paper Reading AI Learner

Multi Robot Collision Avoidance by Learning Whom to Communicate

2022-09-14 04:58:03
Senthil Hariharan Arul, Amrit Singh Bedi, Dinesh Manocha

Abstract

Agents in decentralized multi-agent navigation lack the world knowledge to make safe and (near-)optimal plans reliably. They base their decisions on their neighbors' observable states, which hide the neighbors' navigation intent. We propose augmenting decentralized navigation with inter-agent communication to improve their performance and aid agent in making sound navigation decisions. In this regard, we present a novel reinforcement learning method for multi-agent collision avoidance using selective inter-agent communication. Our network learns to decide 'when' and with 'whom' to communicate to request additional information in an end-to-end fashion. We pose communication selection as a link prediction problem, where the network predicts if communication is necessary given the observable information. The communicated information augments the observed neighbor information to select a suitable navigation plan. As the number of neighbors for a robot varies, we use a multi-head self-attention mechanism to encode neighbor information and create a fixed-length observation vector. We validate that our proposed approach achieves safe and efficient navigation among multiple robots in challenging simulation benchmarks. Aided by learned communication, our network performs significantly better than existing decentralized methods across various metrics such as time-to-goal and collision frequency. Besides, we showcase that the network effectively learns to communicate when necessary in a situation of high complexity.

Abstract (translated)

URL

https://arxiv.org/abs/2209.06415

PDF

https://arxiv.org/pdf/2209.06415.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot