Paper Reading AI Learner

It Takes Two: Learning to Plan for Human-Robot Cooperative Carrying

2022-09-26 17:59:23
Eley Ng, Ziang Liu, Monroe Kennedy III

Abstract

Collaborative table-carrying is a complex task due to the continuous nature of the action and state-spaces, multimodality of strategies, existence of obstacles in the environment, and the need for instantaneous adaptation to other agents. In this work, we present a method for predicting realistic motion plans for cooperative human-robot teams on a table-carrying task. Using a Variational Recurrent Neural Network, VRNN, to model the variation in the trajectory of a human-robot team over time, we are able to capture the distribution over the team's future states while leveraging information from interaction history. The key to our approach is in our model's ability to leverage human demonstration data and generate trajectories that synergize well with humans during test time. We show that the model generates more human-like motion compared to a baseline, centralized sampling-based planner, Rapidly-exploring Random Trees (RRT). Furthermore, we evaluate the VRNN planner with a human partner and show its ability to both generate more human-like paths and achieve higher task success rate than RRT can while planning with a human. Finally, we demonstrate that a LoCoBot using the VRNN planner can complete the task successfully with a human controlling another LoCoBot.

Abstract (translated)

URL

https://arxiv.org/abs/2209.12890

PDF

https://arxiv.org/pdf/2209.12890.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot