Paper Reading AI Learner

Physics-aware Differentiable Discrete Codesign for Diffractive Optical Neural Networks

2022-09-28 17:13:28
Yingjie Li, Ruiyang Chen, Weilu Gao, Cunxi Yu

Abstract

Diffractive optical neural networks (DONNs) have attracted lots of attention as they bring significant advantages in terms of power efficiency, parallelism, and computational speed compared with conventional deep neural networks (DNNs), which have intrinsic limitations when implemented on digital platforms. However, inversely mapping algorithm-trained physical model parameters onto real-world optical devices with discrete values is a non-trivial task as existing optical devices have non-unified discrete levels and non-monotonic properties. This work proposes a novel device-to-system hardware-software codesign framework, which enables efficient physics-aware training of DONNs w.r.t arbitrary experimental measured optical devices across layers. Specifically, Gumbel-Softmax is employed to enable differentiable discrete mapping from real-world device parameters into the forward function of DONNs, where the physical parameters in DONNs can be trained by simply minimizing the loss function of the ML task. The results have demonstrated that our proposed framework offers significant advantages over conventional quantization-based methods, especially with low-precision optical devices. Finally, the proposed algorithm is fully verified with physical experimental optical systems in low-precision settings.

Abstract (translated)

URL

https://arxiv.org/abs/2209.14252

PDF

https://arxiv.org/pdf/2209.14252.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot