Paper Reading AI Learner

Learning by Distilling Context

2022-09-30 02:30:15
Charlie Snell, Dan Klein, Ruiqi Zhong

Abstract

Language models significantly benefit from context tokens, such as prompts or scratchpads. They perform better when prompted with informative instructions, and they acquire new reasoning capabilities by generating a scratch-pad before predicting the final answers. However, they do not \textit{internalize} these performance gains, which disappear when the context tokens are gone. Our work proposes to apply context distillation so that a language model can improve itself by internalizing these gains. Concretely, given a synthetic unlabeled input for the target task, we condition the model on ``[instructions] + [task-input]'' to predict ``[scratch-pad] + [final answer]''; then we fine-tune the same model to predict its own ``[final answer]'' conditioned on the ``[task-input]'', without seeing the ``[instructions]'' or using the ``[scratch-pad]''. We show that context distillation is a general method to train language models, and it can effectively internalize 3 types of training signals. First, it can internalize abstract task instructions and explanations, so we can iteratively update the model parameters with new instructions and overwrite old ones. Second, it can internalize step-by-step reasoning for complex tasks (e.g., 8-digit addition), and such a newly acquired capability proves to be useful for other downstream tasks. Finally, it can internalize concrete training examples, and it outperforms directly learning with gradient descent by 9\% on the SPIDER Text-to-SQL dataset; furthermore, combining context distillation operations can internalize more training examples than the context window size allows.

Abstract (translated)

URL

https://arxiv.org/abs/2209.15189

PDF

https://arxiv.org/pdf/2209.15189.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot