Paper Reading AI Learner

Contextualized Generative Retrieval

2022-10-05 07:42:54
Hyunji Lee, Jaeyoung Kim, Hoyeon Chang, Hanseok Oh, Sohee Yang, Vlad Karpukhin, Yi Lu, Minjoon Seo

Abstract

The text retrieval task is mainly performed in two ways: the bi-encoder approach and the generative approach. The bi-encoder approach maps the document and query embeddings to common vector space and performs a nearest neighbor search. It stably shows high performance and efficiency across different domains but has an embedding space bottleneck as it interacts in L2 or inner product space. The generative retrieval model retrieves by generating a target sequence and overcomes the embedding space bottleneck by interacting in the parametric space. However, it fails to retrieve the information it has not seen during the training process as it depends solely on the information encoded in its own model parameters. To leverage the advantages of both approaches, we propose Contextualized Generative Retrieval model, which uses contextualized embeddings (output embeddings of a language model encoder) as vocab embeddings at the decoding step of generative retrieval. The model uses information encoded in both the non-parametric space of contextualized token embeddings and the parametric space of the generative retrieval model. Our approach of generative retrieval with contextualized vocab embeddings shows higher performance than generative retrieval with only vanilla vocab embeddings in the document retrieval task, an average of 6% higher performance in KILT (NQ, TQA) and 2X higher in NQ-320k, suggesting the benefits of using contextualized embedding in generative retrieval models.

Abstract (translated)

URL

https://arxiv.org/abs/2210.02068

PDF

https://arxiv.org/pdf/2210.02068.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot