Paper Reading AI Learner

Harfang3D Dog-Fight Sandbox: A Reinforcement Learning Research Platform for the Customized Control Tasks of Fighter Aircrafts

2022-10-13 18:18:09
Muhammed Murat Özbek, Süleyman Yıldırım, Muhammet Aksoy, Eric Kernin, Emre Koyuncu

Abstract

The advent of deep learning (DL) gave rise to significant breakthroughs in Reinforcement Learning (RL) research. Deep Reinforcement Learning (DRL) algorithms have reached super-human level skills when applied to vision-based control problems as such in Atari 2600 games where environment states were extracted from pixel information. Unfortunately, these environments are far from being applicable to highly dynamic and complex real-world tasks as in autonomous control of a fighter aircraft since these environments only involve 2D representation of a visual world. Here, we present a semi-realistic flight simulation environment Harfang3D Dog-Fight Sandbox for fighter aircrafts. It is aimed to be a flexible toolbox for the investigation of main challenges in aviation studies using Reinforcement Learning. The program provides easy access to flight dynamics model, environment states, and aerodynamics of the plane enabling user to customize any specific task in order to build intelligent decision making (control) systems via RL. The software also allows deployment of bot aircrafts and development of multi-agent tasks. This way, multiple groups of aircrafts can be configured to be competitive or cooperative agents to perform complicated tasks including Dog Fight. During the experiments, we carried out training for two different scenarios: navigating to a designated location and within visual range (WVR) combat, shortly Dog Fight. Using Deep Reinforcement Learning techniques for both scenarios, we were able to train competent agents that exhibit human-like behaviours. Based on this results, it is confirmed that Harfang3D Dog-Fight Sandbox can be utilized as a 3D realistic RL research platform.

Abstract (translated)

URL

https://arxiv.org/abs/2210.07282

PDF

https://arxiv.org/pdf/2210.07282.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot