Paper Reading AI Learner

Procrastinating with Confidence: Near-Optimal, Anytime, Adaptive Algorithm Configuration

2019-02-14 15:47:15
Robert Kleinberg, Kevin Leyton-Brown, Brendan Lucier, Devon Graham

Abstract

Algorithm configuration methods optimize the performance of a parameterized heuristic algorithm on a given distribution of problem instances. Recent work introduced an algorithm configuration procedure ('Structured Procrastination') that provably achieves near optimal performance with high probability and with nearly minimal runtime in the worst case. It also offers an $\textit{anytime}$ property: it keeps tightening its optimality guarantees the longer it is run. Unfortunately, Structured Procrastination is not $\textit{adaptive}$ to characteristics of the parameterized algorithm: it treats every input like the worst case. Follow-up work ('Leaps and Bounds') achieves adaptivity but trades away the anytime property. This paper introduces a new algorithm configuration method, 'Structured Procrastination with Confidence', that preserves the near-optimality and anytime properties of Structured Procrastination while adding adaptivity. In particular, the new algorithm will perform dramatically faster in settings where many algorithm configurations perform poorly; we show empirically that such settings arise frequently in practice.

Abstract (translated)

URL

https://arxiv.org/abs/1902.05454

PDF

https://arxiv.org/pdf/1902.05454.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot