Paper Reading AI Learner

Can language models handle recursively nested grammatical structures? A case study on comparing models and humans

2022-10-27 10:25:12
Andrew Kyle Lampinen

Abstract

How should we compare the capabilities of language models and humans? Here, I consider a case study: processing of recursively nested grammatical structures. Prior work has suggested that language models cannot handle these structures as reliably as humans can. However, the humans were provided with instructions and training before being evaluated, while the language models were evaluated zero-shot. I therefore attempt to more closely match the evaluation paradigms by providing language models with few-shot prompts. A simple prompt, which contains substantially less content than the human training, allows large language models to consistently outperform the human results. The same prompt even allows extrapolation to more-deeply-nested conditions than have been tested in humans. Further, a reanalysis of the prior human experiments suggests that the humans may not perform above chance at the difficult structures initially. These results suggest that large language models can in fact process recursively nested grammatical structures comparably to humans. This case study highlights how discrepancies in the quantity of experiment-specific context can confound comparisons of language models and humans. I use this case study to reflect on the broader challenge of comparing human and model capabilities, and to suggest that there is an important difference between evaluating cognitive models of a specific phenomenon and evaluating broadly-trained models.

Abstract (translated)

URL

https://arxiv.org/abs/2210.15303

PDF

https://arxiv.org/pdf/2210.15303.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot