Paper Reading AI Learner

TransEDRP: Dual Transformer model with Edge Emdedded for Drug Respond Prediction

2022-10-23 11:00:43
Li Kun, Hu Wenbin

Abstract

GNN-based methods have achieved excellent results as a mainstream task in drug response prediction tasks in recent years. Traditional GNN methods use only the atoms in a drug molecule as nodes to obtain the representation of the molecular graph through node information passing, whereas the method using the transformer can only extract information about the nodes. However, the covalent bonding and chirality of a drug molecule have a great influence on the pharmacological properties of the molecule, and these information are implied in the chemical bonds formed by the edges between the atoms. In addition, CNN methods for modelling cell lines genomics sequences can only perceive local rather than global information about the sequence. In order to solve the above problems, we propose the decoupled dual transformer structure with edge embedded for drug respond prediction (TransEDRP), which is used for the representation of cell line genomics and drug respectively. For the drug branch, we encoded the chemical bond information within the molecule as the embedding of the edge in the molecular graph, extracted the global structural and biochemical information of the drug molecule using graph transformer. For the branch of cell lines genomics, we use the multi-headed attention mechanism to globally represent the genomics sequence. Finally, the drug and genomics branches are fused to predict IC50 values through the transformer layer and the fully connected layer, which two branches are different modalities. Extensive experiments have shown that our method is better than the current mainstream approach in all evaluation indicators.

Abstract (translated)

URL

https://arxiv.org/abs/2210.17401

PDF

https://arxiv.org/pdf/2210.17401.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot