Paper Reading AI Learner

How Stable is Knowledge Base Knowledge?

2022-11-02 09:50:23
Suhas Shrinivasan, Simon Razniewski

Abstract

Knowledge Bases (KBs) provide structured representation of the real-world in the form of extensive collections of facts about real-world entities, their properties and relationships. They are ubiquitous in large-scale intelligent systems that exploit structured information such as in tasks like structured search, question answering and reasoning, and hence their data quality becomes paramount. The inevitability of change in the real-world, brings us to a central property of KBs -- they are highly dynamic in that the information they contain are constantly subject to change. In other words, KBs are unstable. In this paper, we investigate the notion of KB stability, specifically, the problem of KBs changing due to real-world change. Some entity-property-pairs do not undergo change in reality anymore (e.g., Einstein-children or Tesla-founders), while others might well change in the future (e.g., Tesla-board member or Ronaldo-occupation as of 2022). This notion of real-world grounded change is different from other changes that affect the data only, notably correction and delayed insertion, which have received attention in data cleaning, vandalism detection, and completeness estimation already. To analyze KB stability, we proceed in three steps. (1) We present heuristics to delineate changes due to world evolution from delayed completions and corrections, and use these to study the real-world evolution behaviour of diverse Wikidata domains, finding a high skew in terms of properties. (2) We evaluate heuristics to identify entities and properties likely to not change due to real-world change, and filter inherently stable entities and properties. (3) We evaluate the possibility of predicting stability post-hoc, specifically predicting change in a property of an entity, finding that this is possible with up to 83% F1 score, on a balanced binary stability prediction task.

Abstract (translated)

URL

https://arxiv.org/abs/2211.00989

PDF

https://arxiv.org/pdf/2211.00989.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot