Paper Reading AI Learner

A taxonomic system for failure cause analysis of open source AI incidents

2022-11-14 11:21:30
Nikiforos Pittaras, Sean McGregor

Abstract

While certain industrial sectors (e.g., aviation) have a long history of mandatory incident reporting complete with analytical findings, the practice of artificial intelligence (AI) safety benefits from no such mandate and thus analyses must be performed on publicly known ``open source'' AI incidents. Although the exact causes of AI incidents are seldom known by outsiders, this work demonstrates how to apply expert knowledge on the population of incidents in the AI Incident Database (AIID) to infer the potential and likely technical causative factors that contribute to reported failures and harms. We present early work on a taxonomic system that covers a cascade of interrelated incident factors, from system goals (nearly always known) to methods / technologies (knowable in many cases) and technical failure causes (subject to expert analysis) of the implicated systems. We pair this ontology structure with a comprehensive classification workflow that leverages expert knowledge and community feedback, resulting in taxonomic annotations grounded by incident data and human expertise.

Abstract (translated)

URL

https://arxiv.org/abs/2211.07280

PDF

https://arxiv.org/pdf/2211.07280.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot