Paper Reading AI Learner

Privacy against Real-Time Speech Emotion Detection via Acoustic Adversarial Evasion of Machine Learning

2022-11-17 00:25:05
Brian Testa, Yi Xiao, Avery Gump, Asif Salekin

Abstract

Emotional Surveillance is an emerging area with wide-reaching privacy concerns. These concerns are exacerbated by ubiquitous IoT devices with multiple sensors that can support these surveillance use cases. The work presented here considers one such use case: the use of a speech emotion recognition (SER) classifier tied to a smart speaker. This work demonstrates the ability to evade black-box SER classifiers tied to a smart speaker without compromising the utility of the smart speaker. This privacy concern is considered through the lens of adversarial evasion of machine learning. Our solution, Defeating Acoustic Recognition of Emotion via Genetic Programming (DARE-GP), uses genetic programming to generate non-invasive additive audio perturbations (AAPs). By constraining the evolution of these AAPs, transcription accuracy can be protected while simultaneously degrading SER classifier performance. The additive nature of these AAPs, along with an approach that generates these AAPs for a fixed set of users in an utterance and user location-independent manner, supports real-time, real-world evasion of SER classifiers. DARE-GP's use of spectral features, which underlay the emotional content of speech, allows the transferability of AAPs to previously unseen black-box SER classifiers. Further, DARE-GP outperforms state-of-the-art SER evasion techniques and is robust against defenses employed by a knowledgeable adversary. The evaluations in this work culminate with acoustic evaluations against two off-the-shelf commercial smart speakers, where a single AAP could evade a black box classifier over 70% of the time. The final evaluation deployed AAP playback on a small-form-factor system (raspberry pi) integrated with a wake-word system to evaluate the efficacy of a real-world, real-time deployment where DARE-GP is automatically invoked with the smart speaker's wake word.

Abstract (translated)

URL

https://arxiv.org/abs/2211.09273

PDF

https://arxiv.org/pdf/2211.09273.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot