Paper Reading AI Learner

Harnessing label semantics to extract higher performance under noisy label for Company to Industry matching

2022-12-03 20:32:04
Apoorva Jaiswal, Abhishek Mitra

Abstract

Assigning appropriate industry tag(s) to a company is a critical task in a financial institution as it impacts various financial machineries. Yet, it remains a complex task. Typically, such industry tags are to be assigned by Subject Matter Experts (SME) after evaluating company business lines against the industry definitions. It becomes even more challenging as companies continue to add new businesses and newer industry definitions are formed. Given the periodicity of the task it is reasonable to assume that an Artificial Intelligent (AI) agent could be developed to carry it out in an efficient manner. While this is an exciting prospect, the challenges appear from the need of historical patterns of such tag assignments (or Labeling). Labeling is often considered the most expensive task in Machine Learning (ML) due its dependency on SMEs and manual efforts. Therefore, often, in enterprise set up, an ML project encounters noisy and dependent labels. Such labels create technical hindrances for ML Models to produce robust tag assignments. We propose an ML pipeline which uses semantic similarity matching as an alternative to multi label text classification, while making use of a Label Similarity Matrix and a minimum labeling strategy. We demonstrate this pipeline achieves significant improvements over the noise and exhibit robust predictive capabilities.

Abstract (translated)

URL

https://arxiv.org/abs/2212.01685

PDF

https://arxiv.org/pdf/2212.01685.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot