Paper Reading AI Learner

Optimizing Multiple Simultaneous Objectives for Voting and Facility Location

2022-12-07 05:12:40
Yeu Han, Christopher Jerrett, Elliot Anshelevich

Abstract

We study the classic facility location setting, where we are given $n$ clients and $m$ possible facility locations in some arbitrary metric space, and want to choose a location to build a facility. The exact same setting also arises in spatial social choice, where voters are the clients and the goal is to choose a candidate or outcome, with the distance from a voter to an outcome representing the cost of this outcome for the voter (e.g., based on their ideological differences). Unlike most previous work, we do not focus on a single objective to optimize (e.g., the total distance from clients to the facility, or the maximum distance, etc.), but instead attempt to optimize several different objectives simultaneously. More specifically, we consider the $l$-centrum family of objectives, which includes the total distance, max distance, and many others. We present tight bounds on how well any pair of such objectives (e.g., max and sum) can be simultaneously approximated compared to their optimum outcomes. In particular, we show that for any such pair of objectives, it is always possible to choose an outcome which simultaneously approximates both objectives within a factor of $1+\sqrt{2}$, and give a precise characterization of how this factor improves as the two objectives being optimized become more similar. For $q>2$ different centrum objectives, we show that it is always possible to approximate all $q$ of these objectives within a small constant, and that this constant approaches 3 as $q\rightarrow \infty$. Our results show that when optimizing only a few simultaneous objectives, it is always possible to form an outcome which is a significantly better than 3 approximation for all of these objectives.

Abstract (translated)

URL

https://arxiv.org/abs/2212.03467

PDF

https://arxiv.org/pdf/2212.03467.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot