Paper Reading AI Learner

The SLAM Hive Benchmarking Suite

2023-03-21 13:52:43
Yuanyuan Yang, Bowen Xu, Yinjie Li, Sören Schwertfeger

Abstract

Benchmarking Simultaneous Localization and Mapping (SLAM) algorithms is important to scientists and users of robotic systems alike. But through their many configuration options in hardware and software, SLAM systems feature a vast parameter space that scientists up to now were not able to explore. The proposed SLAM Hive Benchmarking Suite is able to analyze SLAM algorithms in 1000's of mapping runs, through its utilization of container technology and deployment in a cluster. This paper presents the architecture and open source implementation of SLAM Hive and compares it to existing efforts on SLAM evaluation. Furthermore, we highlight the function of SLAM Hive by exploring some open source algorithms on public datasets in terms of accuracy. We compare the algorithms against each other and evaluate how parameters effect not only accuracy but also CPU and memory usage. Through this we show that SLAM Hive can become an essential tool for proper comparisons and evaluations of SLAM algorithms and thus drive the scientific development in the research on SLAM.

Abstract (translated)

对同时定位和地图(SLAM)算法进行基准测试对于科学家和机器人系统用户都非常重要。但是,由于硬件和软件中的许多配置选项,SLAM系统具有大量的参数空间,科学家至今无法探索。因此,提出的SLAM Hive基准测试套件能够通过使用容器技术和部署在一个集群中的方式,在数千次地图运行中对SLAM算法进行分析。本文介绍了SLAM Hive的架构和开源实现,并将其与现有的SLAM评估努力进行比较。此外,我们重点突出了SLAM Hive的功能,通过探索一些公共数据集上的开源算法,以精度为指标进行比较。我们比较了各种算法,并评估了参数不仅影响精度,还影响CPU和内存使用情况。通过这些比较,我们表明,SLAM Hive可以成为正确比较和评估SLAM算法的重要工具,从而推动SLAM研究中的科学发展。

URL

https://arxiv.org/abs/2303.11854

PDF

https://arxiv.org/pdf/2303.11854.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot