Paper Reading AI Learner

From Wide to Deep: Dimension Lifting Network for Parameter-efficient Knowledge Graph Embedding

2023-03-22 07:34:33
Borui Cai, Yong Xiang, Longxiang Gao, Di Wu, He Zhang, Jiong Jin, Tom Luan

Abstract

Knowledge graph embedding (KGE) that maps entities and relations into vector representations is essential for downstream tasks. Conventional KGE methods require relatively high-dimensional entity representations to preserve the structural information of knowledge graph, but lead to oversized model parameters. Recent methods reduce model parameters by adopting low-dimensional entity representations, while developing techniques (e.g., knowledge distillation) to compensate for the reduced dimension. However, such operations produce degraded model accuracy and limited reduction of model parameters. Specifically, we view the concatenation of all entity representations as an embedding layer, and then conventional KGE methods that adopt high-dimensional entity representations equal to enlarging the width of the embedding layer to gain expressiveness. To achieve parameter efficiency without sacrificing accuracy, we instead increase the depth and propose a deeper embedding network for entity representations, i.e., a narrow embedding layer and a multi-layer dimension lifting network (LiftNet). Experiments on three public datasets show that the proposed method (implemented based on TransE and DistMult) with 4-dimensional entity representations achieves more accurate link prediction results than counterpart parameter-efficient KGE methods and strong KGE baselines, including TransE and DistMult with 512-dimensional entity representations.

Abstract (translated)

将实体和关系映射为向量表示的知识图嵌入(KGE)对于后续任务是至关重要的。传统的KGE方法需要较高的向量实体表示来保持知识图的结构信息,但会导致模型参数过拟合。最近的方法通过采用低向量实体表示来减少模型参数,同时开发技术(例如知识蒸馏)来补偿减少维度。然而,这种操作会损害模型精度,并限制模型参数的减少。具体来说,我们将所有实体表示拼接起来视为嵌入层,而采用高向量实体表示的传统KGE方法等同于扩大嵌入层的宽度以获得表达能力。为了实现参数效率,而不是牺牲精度,我们会增加深度,并提出更深入的实体嵌入网络,即狭窄的嵌入层和一个多层维度提升网络( liftNet)。在三个公共数据集上的实验表明,采用4向量实体表示的新方法(基于TransE和DistMult)比参数高效的KGE方法和强KGE基线,包括TransE和DistMult使用512向量实体表示的方法,实现更准确的链接预测结果。

URL

https://arxiv.org/abs/2303.12816

PDF

https://arxiv.org/pdf/2303.12816.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot