Paper Reading AI Learner

MsDC-DEQ-Net: Deep Equilibrium Model with Multi-scale Dilated Convolution for Image Compressive Sensing

2024-01-05 16:25:58
Youhao Yu, Richard M. Dansereau

Abstract

Compressive sensing (CS) is a technique that enables the recovery of sparse signals using fewer measurements than traditional sampling methods. To address the computational challenges of CS reconstruction, our objective is to develop an interpretable and concise neural network model for reconstructing natural images using CS. We achieve this by mapping one step of the iterative shrinkage thresholding algorithm (ISTA) to a deep network block, representing one iteration of ISTA. To enhance learning ability and incorporate structural diversity, we integrate aggregated residual transformations (ResNeXt) and squeeze-and-excitation (SE) mechanisms into the ISTA block. This block serves as a deep equilibrium layer, connected to a semi-tensor product network (STP-Net) for convenient sampling and providing an initial reconstruction. The resulting model, called MsDC-DEQ-Net, exhibits competitive performance compared to state-of-the-art network-based methods. It significantly reduces storage requirements compared to deep unrolling methods, using only one iteration block instead of multiple iterations. Unlike deep unrolling models, MsDC-DEQ-Net can be iteratively used, gradually improving reconstruction accuracy while considering computation trade-offs. Additionally, the model benefits from multi-scale dilated convolutions, further enhancing performance.

Abstract (translated)

压缩感知(CS)是一种使用比传统采样方法更少的测量的技术,以恢复稀疏信号。为了应对CS重建的计算挑战,我们的目标是开发一个可解释且紧凑的神经网络模型,用于使用CS对自然图像进行重建。我们通过将迭代收缩阈值算法(ISTA)的迭代一步映射到深度网络块来实现这一目标,表示ISTA的迭代。为了提高学习能力和包含结构多样性,我们将聚合残差变换(ResNeXt)和压缩和激发(SE)机制集成到ISTA模块中。这个模块充当一个深度平衡层,连接到半张量产品网络(STP-Net),用于方便的采样和提供初始重建。所得到的模型,称为MsDC-DEQ-Net,与基于网络的先进方法相比具有竞争性能。它显著减少了存储需求,只需使用一个迭代块而不是多个迭代块。与深展开模型不同,MsDC-DEQ-Net可以迭代使用,在考虑计算开销的同时,逐渐提高重建准确性。此外,模型还利用多尺度扩散卷积,进一步提高性能。

URL

https://arxiv.org/abs/2401.02884

PDF

https://arxiv.org/pdf/2401.02884.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot