Paper Reading AI Learner

Training a Vision Language Model as Smartphone Assistant

2024-04-12 18:28:44
Nicolai Dorka, Janusz Marecki, Ammar Anwar

Abstract

Addressing the challenge of a digital assistant capable of executing a wide array of user tasks, our research focuses on the realm of instruction-based mobile device control. We leverage recent advancements in large language models (LLMs) and present a visual language model (VLM) that can fulfill diverse tasks on mobile devices. Our model functions by interacting solely with the user interface (UI). It uses the visual input from the device screen and mimics human-like interactions, encompassing gestures such as tapping and swiping. This generality in the input and output space allows our agent to interact with any application on the device. Unlike previous methods, our model operates not only on a single screen image but on vision-language sentences created from sequences of past screenshots along with corresponding actions. Evaluating our method on the challenging Android in the Wild benchmark demonstrates its promising efficacy and potential.

Abstract (translated)

address the challenge of a digital assistant capable of executing a wide range of user tasks, our research focuses on the realm of instruction-based mobile device control. We leverage recent advances in large language models (LLMs) and present a visual language model (VLM) that can perform various tasks on mobile devices. Our model functions by interacting solely with the user interface (UI). It uses the visual input from the device screen and mimics human-like interactions, covering gestures such as tapping and swiping. This generality in the input and output space allows our agent to interact with any application on the device. Unlike previous methods, our model operates not only on a single screen image but on vision-language sentences created from sequences of past screenshots along with corresponding actions. Evaluating our method on the challenging Android in the Wild benchmark demonstrates its promising efficacy and potential.

URL

https://arxiv.org/abs/2404.08755

PDF

https://arxiv.org/pdf/2404.08755.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot