Paper Reading AI Learner

Reinforcement Learning Approach for Integrating Compressed Contexts into Knowledge Graphs

2024-04-19 02:32:43
Ngoc Quach, Qi Wang, Zijun Gao, Qifeng Sun, Bo Guan, Lillian Floyd

Abstract

The widespread use of knowledge graphs in various fields has brought about a challenge in effectively integrating and updating information within them. When it comes to incorporating contexts, conventional methods often rely on rules or basic machine learning models, which may not fully grasp the complexity and fluidity of context information. This research suggests an approach based on reinforcement learning (RL), specifically utilizing Deep Q Networks (DQN) to enhance the process of integrating contexts into knowledge graphs. By considering the state of the knowledge graph as environment states defining actions as operations for integrating contexts and using a reward function to gauge the improvement in knowledge graph quality post-integration, this method aims to automatically develop strategies for optimal context integration. Our DQN model utilizes networks as function approximators, continually updating Q values to estimate the action value function, thus enabling effective integration of intricate and dynamic context information. Initial experimental findings show that our RL method outperforms techniques in achieving precise context integration across various standard knowledge graph datasets, highlighting the potential and effectiveness of reinforcement learning in enhancing and managing knowledge graphs.

Abstract (translated)

在各个领域的知识图谱的广泛应用给有效地整合和更新知识带来了挑战。当涉及到纳入上下文时,传统的做法通常依赖于规则或基本的机器学习模型,这些模型可能无法完全理解上下文信息的复杂性和流动性。这项研究建议了一种基于强化学习(RL)的方法,具体利用深度 Q 网络(DQN)增强将上下文融入知识图谱的过程。通过将知识图谱的状态定义为操作,将知识图谱的状态作为上下文的整合操作,并使用奖励函数衡量知识图谱质量的改善,这种方法旨在自动开发最优上下文整合策略。我们的 DQN 模型使用网络作为函数近似的参数,不断更新 Q 值来估计动作价值函数,从而实现对复杂和动态上下文信息的有效整合。初步实验结果表明,我们的 RL 方法在各种标准知识图谱数据集上实现了精确的上下文整合,突出了强化学习在增强和管理知识图谱中的潜力和有效性。

URL

https://arxiv.org/abs/2404.12587

PDF

https://arxiv.org/pdf/2404.12587.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot