Paper Reading AI Learner

Deterministic PAC-Bayesian generalization bounds for deep networks via generalizing noise-resilience

2019-05-30 22:45:06
Vaishnavh Nagarajan, J. Zico Kolter

Abstract

The ability of overparameterized deep networks to generalize well has been linked to the fact that stochastic gradient descent (SGD) finds solutions that lie in flat, wide minima in the training loss -- minima where the output of the network is resilient to small random noise added to its parameters. So far this observation has been used to provide generalization guarantees only for neural networks whose parameters are either \textit{stochastic} or \textit{compressed}. In this work, we present a general PAC-Bayesian framework that leverages this observation to provide a bound on the original network learned -- a network that is deterministic and uncompressed. What enables us to do this is a key novelty in our approach: our framework allows us to show that if on training data, the interactions between the weight matrices satisfy certain conditions that imply a wide training loss minimum, these conditions themselves {\em generalize} to the interactions between the matrices on test data, thereby implying a wide test loss minimum. We then apply our general framework in a setup where we assume that the pre-activation values of the network are not too small (although we assume this only on the training data). In this setup, we provide a generalization guarantee for the original (deterministic, uncompressed) network, that does not scale with product of the spectral norms of the weight matrices -- a guarantee that would not have been possible with prior approaches.

Abstract (translated)

多帧深网络推广良好的能力与以下事实有关:随机梯度下降(SGD)在训练损失中找到平坦、宽的最小值——最小值,其中网络输出对添加到其参数中的小随机噪声具有弹性。到目前为止,这项研究仅用于为参数为 extit随机或 extit压缩的神经网络提供泛化保证。在这项工作中,我们提出了一个通用的PAC贝叶斯框架,它利用这一观察结果提供了原始网络学习的一个边界——一个确定性和未压缩的网络。使我们能够做到这一点的是我们方法的一个关键新颖之处:我们的框架允许我们证明,如果在训练数据上,权重矩阵之间的交互满足某些条件,这意味着训练损失最小,这些条件本身em将归纳为测试数据矩阵之间的交互,从而暗示测试损失最小。然后,我们在一个设置中应用我们的通用框架,在这个设置中,我们假设网络的预激活值不太小(尽管我们只在培训数据上假设)。在这个设置中,我们为原始的(确定性的,未压缩的)网络提供了一个泛化保证,它不随权重矩阵的光谱规范的乘积而缩放——这是一个在先前的方法中不可能实现的保证。

URL

https://arxiv.org/abs/1905.13344

PDF

https://arxiv.org/pdf/1905.13344.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot