Paper Reading AI Learner

SwiftNet: Using Graph Propagation as Meta-knowledge to Search HighlyvRepresentative Neural Architectures

2019-06-19 19:00:12
Hsin-Pai (Dave) Cheng, Tunhou Zhang, Yukun Yang, Feng Yan, Shiyu Li, Harris Teague, Hai (Helen)Li, Yiran Chen

Abstract

Designing neural architectures for edge devices is subject to constraints of accuracy, inference latency, and computational cost. Traditionally, researchers manually craft deep neural networks to meet the needs of mobile devices. Neural Architecture Search (NAS) was proposed to automate the neural architecture design without requiring extensive domain expertise and significant manual efforts. Recent works utilized NAS to design mobile models by taking into account hardware constraints and achieved state-of-the-art accuracy with fewer parameters and less computational cost measured in Multiply-accumulates (MACs). To find highly compact neural architectures, existing works relies on predefined cells and directly applying width multiplier, which may potentially limit the model flexibility, reduce the useful feature map information, and cause accuracy drop. To conquer this issue, we propose GRAM(GRAph propagation as Meta-knowledge) that adopts fine-grained (node-wise) search method and accumulates the knowledge learned in updates into a meta-graph. As a result, GRAM can enable more flexible search space and achieve higher search efficiency. Without the constraints of predefined cell or blocks, we propose a new structure-level pruning method to remove redundant operations in neural architectures. SwiftNet, which is a set of models discovered by GRAM, outperforms MobileNet-V2 by 2.15x higher accuracy density and 2.42x faster with similar accuracy. Compared with FBNet, SwiftNet reduces the search cost by 26x and achieves 2.35x higher accuracy density and 1.47x speedup while preserving similar accuracy. SwiftNetcan obtain 63.28% top-1 accuracy on ImageNet-1K with only 53M MACs and 2.07M parameters. The corresponding inference latency is only 19.09 ms on Google Pixel 1.

Abstract (translated)

URL

https://arxiv.org/abs/1906.08305

PDF

https://arxiv.org/pdf/1906.08305.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot