Paper Reading AI Learner

A VR System for Immersive Teleoperation and Live Exploration with a Mobile Robot

2019-08-08 06:51:30
Patrick Stotko, Stefan Krumpen, Max Schwarz, Christian Lenz, Sven Behnke, Reinhard Klein, Michael Weinmann
     

Abstract

Applications like disaster management and industrial inspection often require experts to enter contaminated places. To circumvent the need for physical presence, it is desirable to generate a fully immersive individual live teleoperation experience. However, standard video-based approaches suffer from a limited degree of immersion and situation awareness due to the restriction to the camera view, which impacts the navigation. In this paper, we present a novel VR-based practical system for immersive robot teleoperation and scene exploration. While being operated through the scene, a robot captures RGB-D data that is streamed to a SLAM-based live multi-client telepresence system. Here, a global 3D model of the already captured scene parts is reconstructed and streamed to the individual remote user clients where the rendering for e.g. head-mounted display devices (HMDs) is performed. We introduce a novel lightweight robot client component which transmits robot-specific data and enables a quick integration into existing robotic systems. This way, in contrast to first-person exploration systems, the operators can explore and navigate in the remote site completely independent of the current position and view of the capturing robot, complementing traditional input devices for teleoperation. We provide a proof-of-concept implementation and demonstrate the capabilities as well as the performance of our system regarding interactive object measurements and bandwidth-efficient data streaming and visualization. Furthermore, we show its benefits over purely video-based teleoperation in a user study revealing a higher degree of situation awareness and a more precise navigation in challenging environments.

Abstract (translated)

URL

https://arxiv.org/abs/1908.02949

PDF

https://arxiv.org/pdf/1908.02949.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot