Paper Reading AI Learner

On Analog Gradient Descent Learning over Multiple Access Fading Channels

2019-08-20 16:03:23
Tomer Sery, Kobi Cohen

Abstract

We consider a distributed learning problem over multiple access channel (MAC) using a large wireless network. The computation is made by the network edge and is based on received data from a large number of distributed nodes which transmit over a noisy fading MAC. The objective function is a sum of the nodes' local loss functions. This problem has attracted a growing interest in distributed sensing systems, and more recently in federated learning. We develop a novel Gradient-Based Multiple Access (GBMA) algorithm to solve the distributed learning problem over MAC. Specifically, the nodes transmit an analog function of the local gradient using common shaping waveforms and the network edge receives a superposition of the analog transmitted signals used for updating the estimate. GBMA does not require power control or beamforming to cancel the fading effect as in other algorithms, and operates directly with noisy distorted gradients. We analyze the performance of GBMA theoretically, and prove that it can approach the convergence rate of the centralized gradient descent (GD) algorithm in large networks. Specifically, we establish a finite-sample bound of the error for both convex and strongly convex loss functions with Lipschitz gradient. Furthermore, we provide energy scaling laws for approaching the centralized convergence rate as the number of nodes increases. Finally, experimental results support the theoretical findings, and demonstrate strong performance of GBMA using synthetic and real data.

Abstract (translated)

URL

https://arxiv.org/abs/1908.07463

PDF

https://arxiv.org/pdf/1908.07463.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot