Paper Reading AI Learner

Non-monotonic Logical Reasoning Guiding Deep Learning for Explainable Visual Question Answering

2019-09-23 23:34:32
Heather Riley, Mohan Sridharan

Abstract

State of the art algorithms for many pattern recognition problems rely on deep network models. Training these models requires a large labeled dataset and considerable computational resources. Also, it is difficult to understand the working of these learned models, limiting their use in some critical applications. Towards addressing these limitations, our architecture draws inspiration from research in cognitive systems, and integrates the principles of commonsense logical reasoning, inductive learning, and deep learning. In the context of answering explanatory questions about scenes and the underlying classification problems, the architecture uses deep networks for extracting features from images and for generating answers to queries. Between these deep networks, it embeds components for non-monotonic logical reasoning with incomplete commonsense domain knowledge, and for decision tree induction. It also incrementally learns and reasons with previously unknown constraints governing the domain's states. We evaluated the architecture in the context of datasets of simulated and real-world images, and a simulated robot computing, executing, and providing explanatory descriptions of plans. Experimental results indicate that in comparison with an ``end to end'' architecture of deep networks, our architecture provides better accuracy on classification problems when the training dataset is small, comparable accuracy with larger datasets, and more accurate answers to explanatory questions. Furthermore, incremental acquisition of previously unknown constraints improves the ability to answer explanatory questions, and extending non-monotonic logical reasoning to support planning and diagnostics improves the reliability and efficiency of computing and executing plans on a simulated robot.

Abstract (translated)

URL

https://arxiv.org/abs/1909.10650

PDF

https://arxiv.org/pdf/1909.10650.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot