Paper Reading AI Learner

Sub-Architecture Ensemble Pruning in Neural Architecture Search

2019-10-01 13:26:54
Yijun Bian, Qingquan Song, Mengnan Du, Jun Yao, Huanhuan Chen, Xia Hu

Abstract

Neural architecture search (NAS) is gaining more and more attention in recent years due to its flexibility and the remarkable capability of reducing the burden of neural network design. To achieve better performance, however, the searching process usually costs massive computation, which might not be affordable to researchers and practitioners. While recent attempts have employed ensemble learning methods to mitigate the enormous computation, an essential characteristic of diversity in ensemble methods is missed out, causing more similar sub-architectures to be gathered and potential redundancy in the final ensemble architecture. To bridge this gap, we propose a pruning method for NAS ensembles, named as ''Sub-Architecture Ensemble Pruning in Neural Architecture Search (SAEP).'' It targets to utilize diversity and achieve sub-ensemble architectures in a smaller size with comparable performance to the unpruned ensemble architectures. Three possible solutions are proposed to decide which subarchitectures should be pruned during the searching process. Experimental results demonstrate the effectiveness of the proposed method in largely reducing the size of ensemble architectures while maintaining the final performance. Moreover, distinct deeper architectures could be discovered if the searched sub-architectures are not diverse enough.

Abstract (translated)

URL

https://arxiv.org/abs/1910.00370

PDF

https://arxiv.org/pdf/1910.00370.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot