Paper Reading AI Learner

Say As You Wish: Fine-grained Control of Image Caption Generation with Abstract Scene Graphs

2020-03-01 03:34:07
Shizhe Chen, Qin Jin, Peng Wang, Qi Wu

Abstract

Humans are able to describe image contents with coarse to fine details as they wish. However, most image captioning models are intention-agnostic which can not generate diverse descriptions according to different user intentions initiatively. In this work, we propose the Abstract Scene Graph (ASG) structure to represent user intention in fine-grained level and control what and how detailed the generated description should be. The ASG is a directed graph consisting of three types of \textbf{abstract nodes} (object, attribute, relationship) grounded in the image without any concrete semantic labels. Thus it is easy to obtain either manually or automatically. From the ASG, we propose a novel ASG2Caption model, which is able to recognise user intentions and semantics in the graph, and therefore generate desired captions according to the graph structure. Our model achieves better controllability conditioning on ASGs than carefully designed baselines on both VisualGenome and MSCOCO datasets. It also significantly improves the caption diversity via automatically sampling diverse ASGs as control signals.

Abstract (translated)

URL

https://arxiv.org/abs/2003.00387

PDF

https://arxiv.org/pdf/2003.00387.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot