Paper Reading AI Learner

Forecasting AI Progress: A Research Agenda

2020-08-04 21:46:46
Ross Gruetzemacher, Florian Dorner, Niko Bernaola-Alvarez, Charlie Giattino, David Manheim

Abstract

Forecasting AI progress is essential to reducing uncertainty in order to appropriately plan for research efforts on AI safety and AI governance. While this is generally considered to be an important topic, little work has been conducted on it and there is no published document that gives and objective overview of the field. Moreover, the field is very diverse and there is no published consensus regarding its direction. This paper describes the development of a research agenda for forecasting AI progress which utilized the Delphi technique to elicit and aggregate experts' opinions on what questions and methods to prioritize. The results of the Delphi are presented; the remainder of the paper follow the structure of these results, briefly reviewing relevant literature and suggesting future work for each topic. Experts indicated that a wide variety of methods should be considered for forecasting AI progress. Moreover, experts identified salient questions that were both general and completely unique to the problem of forecasting AI progress. Some of the highest priority topics include the validation of (partially unresolved) forecasts, how to make forecasting action-guiding and the quality of different performance metrics. While statistical methods seem more promising, there is also recognition that supplementing judgmental techniques can be quite beneficial.

Abstract (translated)

URL

https://arxiv.org/abs/2008.01848

PDF

https://arxiv.org/pdf/2008.01848.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot