Paper Reading AI Learner

Scalable Adversarial Attack on Graph Neural Networks with Alternating Direction Method of Multipliers

2020-09-22 00:33:36
Boyuan Feng, Yuke Wang, Xu Li, Yufei Ding

Abstract

Graph neural networks (GNNs) have achieved high performance in analyzing graph-structured data and have been widely deployed in safety-critical areas, such as finance and autonomous driving. However, only a few works have explored GNNs' robustness to adversarial attacks, and their designs are usually limited by the scale of input datasets (i.e., focusing on small graphs with only thousands of nodes). In this work, we propose, SAG, the first scalable adversarial attack method with Alternating Direction Method of Multipliers (ADMM). We first decouple the large-scale graph into several smaller graph partitions and cast the original problem into several subproblems. Then, we propose to solve these subproblems using projected gradient descent on both the graph topology and the node features that lead to considerably lower memory consumption compared to the conventional attack methods. Rigorous experiments further demonstrate that SAG can significantly reduce the computation and memory overhead compared with the state-of-the-art approach, making SAG applicable towards graphs with large size of nodes and edges.

Abstract (translated)

URL

https://arxiv.org/abs/2009.10233

PDF

https://arxiv.org/pdf/2009.10233.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot