Paper Reading AI Learner

Optimizing Transformers with Approximate Computing for Faster, Smaller and more Accurate NLP Models

2020-10-07 23:29:34
Amrit Nagarajan, Sanchari Sen, Jacob R. Stevens, Anand Raghunathan

Abstract

Transformer models have garnered a lot of interest in recent years by delivering state-of-the-art performance in a range of Natural Language Processing (NLP) tasks. However, these models can have over a hundred billion parameters, presenting very high computational and memory requirements. We address this challenge through Approximate Computing, specifically targeting the use of Transformers in NLP tasks. Transformers are typically pre-trained and subsequently specialized for specific tasks through transfer learning. Based on the observation that pre-trained Transformers are often over-parameterized for several downstream NLP tasks, we propose a framework to create smaller, faster and in some cases more accurate models. The key cornerstones of the framework are a Significance Analysis (SA) method that identifies components in a pre-trained Transformer that are less significant for a given task, and techniques to approximate the less significant components. Our approximations include pruning of blocks, attention heads and weight groups, quantization of less significant weights and a low-complexity sign-matching based attention mechanism. Our framework can be adapted to produce models that are faster, smaller and/or more accurate, depending on the user's constraints. We apply our framework to seven Transformer models, including optimized models like DistilBERT and Q8BERT, and three downstream tasks. We demonstrate that our framework produces models that are up to 4x faster and up to 14x smaller (with less than 0.5% relative accuracy degradation), or up to 5.5% more accurate with simultaneous improvements of up to 9.83x in model size or 2.94x in speed.

Abstract (translated)

URL

https://arxiv.org/abs/2010.03688

PDF

https://arxiv.org/pdf/2010.03688.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot