Paper Reading AI Learner

Re-Assessing the 'Classify and Count' Quantification Method

2020-11-04 21:47:39
Alejandro Moreo, Fabrizio Sebastiani

Abstract

Learning to quantify (a.k.a.\ quantification) is a task concerned with training unbiased estimators of class prevalence via supervised learning. This task originated with the observation that "Classify and Count" (CC), the trivial method of obtaining class prevalence estimates, is often a biased estimator, and thus delivers suboptimal quantification accuracy; following this observation, several methods for learning to quantify have been proposed that have been shown to outperform CC. In this work we contend that previous works have failed to use properly optimised versions of CC. We thus reassess the real merits of CC (and its variants), and argue that, while still inferior to some cutting-edge methods, they deliver near-state-of-the-art accuracy once (a) hyperparameter optimisation is performed, and (b) this optimisation is performed by using a true quantification loss instead of a standard classification-based loss. Experiments on three publicly available binary sentiment classification datasets support these conclusions.

Abstract (translated)

URL

https://arxiv.org/abs/2011.02552

PDF

https://arxiv.org/pdf/2011.02552.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot