Paper Reading AI Learner

Neurosymbolic AI for Situated Language Understanding

2020-12-05 05:03:28
Nikhil Krishnaswamy, James Pustejovsky

Abstract

In recent years, data-intensive AI, particularly the domain of natural language processing and understanding, has seen significant progress driven by the advent of large datasets and deep neural networks that have sidelined more classic AI approaches to the field. These systems can apparently demonstrate sophisticated linguistic understanding or generation capabilities, but often fail to transfer their skills to situations they have not encountered before. We argue that computational situated grounding provides a solution to some of these learning challenges by creating situational representations that both serve as a formal model of the salient phenomena, and contain rich amounts of exploitable, task-appropriate data for training new, flexible computational models. Our model reincorporates some ideas of classic AI into a framework of neurosymbolic intelligence, using multimodal contextual modeling of interactive situations, events, and object properties. We discuss how situated grounding provides diverse data and multiple levels of modeling for a variety of AI learning challenges, including learning how to interact with object affordances, learning semantics for novel structures and configurations, and transferring such learned knowledge to new objects and situations.

Abstract (translated)

URL

https://arxiv.org/abs/2012.02947

PDF

https://arxiv.org/pdf/2012.02947.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot