Paper Reading AI Learner

Distributed Multi-agent Meta Learning for Trajectory Design in Wireless Drone Networks

2020-12-06 01:30:12
Ye Hu, Mingzhe Chen, Walid Saad, H. Vincent Poor, Shuguang Cui

Abstract

In this paper, the problem of the trajectory design for a group of energy-constrained drones operating in dynamic wireless network environments is studied. In the considered model, a team of drone base stations (DBSs) is dispatched to cooperatively serve clusters of ground users that have dynamic and unpredictable uplink access demands. In this scenario, the DBSs must cooperatively navigate in the considered area to maximize coverage of the dynamic requests of the ground users. This trajectory design problem is posed as an optimization framework whose goal is to find optimal trajectories that maximize the fraction of users served by all DBSs. To find an optimal solution for this non-convex optimization problem under unpredictable environments, a value decomposition based reinforcement learning (VDRL) solution coupled with a meta-training mechanism is proposed. This algorithm allows the DBSs to dynamically learn their trajectories while generalizing their learning to unseen environments. Analytical results show that, the proposed VD-RL algorithm is guaranteed to converge to a local optimal solution of the non-convex optimization problem. Simulation results show that, even without meta-training, the proposed VD-RL algorithm can achieve a 53.2% improvement of the service coverage and a 30.6% improvement in terms of the convergence speed, compared to baseline multi-agent algorithms. Meanwhile, the use of meta-learning improves the convergence speed of the VD-RL algorithm by up to 53.8% when the DBSs must deal with a previously unseen task.

Abstract (translated)

URL

https://arxiv.org/abs/2012.03158

PDF

https://arxiv.org/pdf/2012.03158.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot