Paper Reading AI Learner

Efficient and Scalable Structure Learning for Bayesian Networks: Algorithms and Applications

2020-12-07 09:11:08
Rong Zhu, Andreas Pfadler, Ziniu Wu, Yuxing Han, Xiaoke Yang, Feng Ye, Zhenping Qian, Jingren Zhou, Bin Cui

Abstract

Structure Learning for Bayesian network (BN) is an important problem with extensive research. It plays central roles in a wide variety of applications in Alibaba Group. However, existing structure learning algorithms suffer from considerable limitations in real world applications due to their low efficiency and poor scalability. To resolve this, we propose a new structure learning algorithm LEAST, which comprehensively fulfills our business requirements as it attains high accuracy, efficiency and scalability at the same time. The core idea of LEAST is to formulate the structure learning into a continuous constrained optimization problem, with a novel differentiable constraint function measuring the acyclicity of the resulting graph. Unlike with existing work, our constraint function is built on the spectral radius of the graph and could be evaluated in near linear time w.r.t. the graph node size. Based on it, LEAST can be efficiently implemented with low storage overhead. According to our benchmark evaluation, LEAST runs 1 to 2 orders of magnitude faster than state of the art method with comparable accuracy, and it is able to scale on BNs with up to hundreds of thousands of variables. In our production environment, LEAST is deployed and serves for more than 20 applications with thousands of executions per day. We describe a concrete scenario in a ticket booking service in Alibaba, where LEAST is applied to build a near real-time automatic anomaly detection and root error cause analysis system. We also show that LEAST unlocks the possibility of applying BN structure learning in new areas, such as large-scale gene expression data analysis and explainable recommendation system.

Abstract (translated)

URL

https://arxiv.org/abs/2012.03540

PDF

https://arxiv.org/pdf/2012.03540.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot