Paper Reading AI Learner

Next Wave Artificial Intelligence: Robust, Explainable, Adaptable, Ethical, and Accountable

2020-12-11 00:50:09
Odest Chadwicke Jenkins, Daniel Lopresti, Melanie Mitchell

Abstract

The history of AI has included several "waves" of ideas. The first wave, from the mid-1950s to the 1980s, focused on logic and symbolic hand-encoded representations of knowledge, the foundations of so-called "expert systems". The second wave, starting in the 1990s, focused on statistics and machine learning, in which, instead of hand-programming rules for behavior, programmers constructed "statistical learning algorithms" that could be trained on large datasets. In the most recent wave research in AI has largely focused on deep (i.e., many-layered) neural networks, which are loosely inspired by the brain and trained by "deep learning" methods. However, while deep neural networks have led to many successes and new capabilities in computer vision, speech recognition, language processing, game-playing, and robotics, their potential for broad application remains limited by several factors. A concerning limitation is that even the most successful of today's AI systems suffer from brittleness-they can fail in unexpected ways when faced with situations that differ sufficiently from ones they have been trained on. This lack of robustness also appears in the vulnerability of AI systems to adversarial attacks, in which an adversary can subtly manipulate data in a way to guarantee a specific wrong answer or action from an AI system. AI systems also can absorb biases-based on gender, race, or other factors-from their training data and further magnify these biases in their subsequent decision-making. Taken together, these various limitations have prevented AI systems such as automatic medical diagnosis or autonomous vehicles from being sufficiently trustworthy for wide deployment. The massive proliferation of AI across society will require radically new ideas to yield technology that will not sacrifice our productivity, our quality of life, or our values.

Abstract (translated)

URL

https://arxiv.org/abs/2012.06058

PDF

https://arxiv.org/pdf/2012.06058.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot