Paper Reading AI Learner

Active Hierarchical Imitation and Reinforcement Learning

2020-12-14 08:27:27
Yaru Niu, Yijun Gu

Abstract

Humans can leverage hierarchical structures to split a task into sub-tasks and solve problems efficiently. Both imitation and reinforcement learning or a combination of them with hierarchical structures have been proven to be an efficient way for robots to learn complex tasks with sparse rewards. However, in the previous work of hierarchical imitation and reinforcement learning, the tested environments are in relatively simple 2D games, and the action spaces are discrete. Furthermore, many imitation learning works focusing on improving the policies learned from the expert polices that are hard-coded or trained by reinforcement learning algorithms, rather than human experts. In the scenarios of human-robot interaction, humans can be required to provide demonstrations to teach the robot, so it is crucial to improve the learning efficiency to reduce expert efforts, and know human's perception about the learning/training process. In this project, we explored different imitation learning algorithms and designed active learning algorithms upon the hierarchical imitation and reinforcement learning framework we have developed. We performed an experiment where five participants were asked to guide a randomly initialized agent to a random goal in a maze. Our experimental results showed that using DAgger and reward-based active learning method can achieve better performance while saving more human efforts physically and mentally during the training process.

Abstract (translated)

URL

https://arxiv.org/abs/2012.07330

PDF

https://arxiv.org/pdf/2012.07330.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot