Paper Reading AI Learner

Pain Assessment based on fNIRS using Bidirectional LSTMs

2020-12-24 12:55:39
Raul Fernandez Rojas, Julio Romero, Jehu Lopez-Aparicio, Keng-Liang Ou

Abstract

Assessing pain in patients unable to speak (also called non-verbal patients) is extremely complicated and often is done by clinical judgement. However, this method is not reliable since patients vital signs can fluctuate significantly due to other underlying medical conditions. No objective diagnosis test exists to date that can assist medical practitioners in the diagnosis of pain. In this study we propose the use of functional near-infrared spectroscopy (fNIRS) and deep learning for the assessment of human pain. The aim of this study is to explore the use deep learning to automatically learn features from fNIRS raw data to reduce the level of subjectivity and domain knowledge required in the design of hand-crafted features. Four deep learning models were evaluated, multilayer perceptron (MLP), forward and backward long short-term memory net-works (LSTM), and bidirectional LSTM. The results showed that the Bi-LSTM model achieved the highest accuracy (90.6%)and faster than the other three models. These results advance knowledge in pain assessment using neuroimaging as a method of diagnosis and represent a step closer to developing a physiologically based diagnosis of human pain that will benefit vulnerable populations who cannot self-report pain.

Abstract (translated)

URL

https://arxiv.org/abs/2012.13231

PDF

https://arxiv.org/pdf/2012.13231.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot