Paper Reading AI Learner

Privacy Protection of Grid Users Data with Blockchain and Adversarial Machine Learning

2021-01-15 21:54:55
Ibrahim Yilmaz, Kavish Kapoor, Ambareen Siraj, Mahmoud Abouyoussef

Abstract

Utilities around the world are reported to invest a total of around 30 billion over the next few years for installation of more than 300 million smart meters, replacing traditional analog meters [1]. By mid-decade, with full country wide deployment, there will be almost 1.3 billion smart meters in place [1]. Collection of fine grained energy usage data by these smart meters provides numerous advantages such as energy savings for customers with use of demand optimization, a billing system of higher accuracy with dynamic pricing programs, bidirectional information exchange ability between end-users for better consumer-operator interaction, and so on. However, all these perks associated with fine grained energy usage data collection threaten the privacy of users. With this technology, customers' personal data such as sleeping cycle, number of occupants, and even type and number of appliances stream into the hands of the utility companies and can be subject to misuse. This research paper addresses privacy violation of consumers' energy usage data collected from smart meters and provides a novel solution for the privacy protection while allowing benefits of energy data analytics. First, we demonstrate the successful application of occupancy detection attacks using a deep neural network method that yields high accuracy results. We then introduce Adversarial Machine Learning Occupancy Detection Avoidance with Blockchain (AMLODA-B) framework as a counter-attack by deploying an algorithm based on the Long Short Term Memory (LSTM) model into the standardized smart metering infrastructure to prevent leakage of consumers personal information. Our privacy-aware approach protects consumers' privacy without compromising the correctness of billing and preserves operational efficiency without use of authoritative intermediaries.

Abstract (translated)

URL

https://arxiv.org/abs/2101.06308

PDF

https://arxiv.org/pdf/2101.06308.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot