Paper Reading AI Learner

The heads hypothesis: A unifying statistical approach towards understanding multi-headed attention in BERT

2021-01-22 14:10:59
Madhura Pande, Aakriti Budhraja, Preksha Nema, Pratyush Kumar, Mitesh M. Khapra

Abstract

tract: Multi-headed attention heads are a mainstay in transformer-based models. Different methods have been proposed to classify the role of each attention head based on the relations between tokens which have high pair-wise attention. These roles include syntactic (tokens with some syntactic relation), local (nearby tokens), block (tokens in the same sentence) and delimiter (the special [CLS], [SEP] tokens). There are two main challenges with existing methods for classification: (a) there are no standard scores across studies or across functional roles, and (b) these scores are often average quantities measured across sentences without capturing statistical significance. In this work, we formalize a simple yet effective score that generalizes to all the roles of attention heads and employs hypothesis testing on this score for robust inference. This provides us the right lens to systematically analyze attention heads and confidently comment on many commonly posed questions on analyzing the BERT model. In particular, we comment on the co-location of multiple functional roles in the same attention head, the distribution of attention heads across layers, and effect of fine-tuning for specific NLP tasks on these functional roles.

Abstract (translated)

URL

https://arxiv.org/abs/2101.09115

PDF

https://arxiv.org/pdf/2101.09115


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Attention Autonomous Bert Boundary_Detection Caption Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Drone Dynamic_Memory_Network Edge_Detection Embedding Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot