Paper Reading AI Learner

Adversarially learning disentangled speech representations for robust multi-factor voice conversion

2021-01-30 08:29:55
Jie Wang, Jingbei Li, Xintao Zhao, Zhiyong Wu, Helen Meng

Abstract

Factorizing speech as disentangled speech representations is vital to achieve highly controllable style transfer in voice conversion (VC). Conventional speech representation learning methods in VC only factorize speech as speaker and content, lacking controllability on other prosody-related factors. State-of-the-art speech representation learning methods for more speech factors are using primary disentangle algorithms such as random resampling and ad-hoc bottleneck layer size adjustment, which however is hard to ensure robust speech representation disentanglement. To increase the robustness of highly controllable style transfer on multiple factors in VC, we propose a disentangled speech representation learning framework based on adversarial learning. Four speech representations characterizing content, timbre, rhythm and pitch are extracted, and further disentangled by an adversarial network inspired by BERT. The adversarial network is used to minimize the correlations between the speech representations, by randomly masking and predicting one of the representations from the others. A word prediction network is also adopted to learn a more informative content representation. Experimental results show that the proposed speech representation learning framework significantly improves the robustness of VC on multiple factors by increasing conversion rate from 48.2% to 57.1% and ABX preference exceeding by 31.2% compared with state-of-the-art method.

Abstract (translated)

URL

https://arxiv.org/abs/2102.00184

PDF

https://arxiv.org/pdf/2102.00184.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot